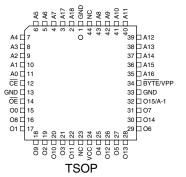
Features

- Read Access Time 150 ns
- Word-wide or Byte-wide Configurable
- Dual Voltage Range Operation
 - Unregulated Battery Power Supply Range, 2.7V to 3.6V or Standard 5V ± 10% Supply Range
- 8-megabit Flash and Mask ROM-compatible Pinouts
- Low-power CMOS Operation
 - 20 µA Maximum Standby
 - 10 mA Max. Active at 5 MHz for V_{CC} = 3.6V
- JEDEC Standard Packages
 - 44-lead PLCC
 - 44-lead SOIC (SOP)
 - 48-lead TSOP (12 mm x 20 mm)
- High-reliability CMOS Technology
 - 2,000 ESD Protection
 - 200 mA Latch-up Immunity
- Rapid[™] Programming Algorithm 50 µs/Word (Typical)
- CMOS- and TTL-compatible Inputs and Outputs
 - JEDEC Standard for LVTTL and LVBO
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

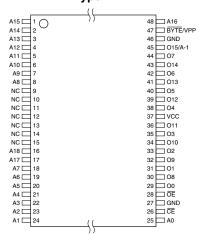
Description

The AT27BV800 is a high-performance, low-power, low-voltage, 8,388,608-bit, one-time programmable read-only memory (OTP EPROM) organized as either 512K by 16 or 1024K by 8 bits. It requires only one supply in the range of 2.7 to 3.6V in normal

Pin Configurations


	<u> </u>
Pin Name	Function
A0 - A18	Addresses
O0 - O15	Outputs
O15/A-1	Output/Address
BYTE/VPP	Byte Mode/Program Supply
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect

SOIC (SOP)



PLCC

(continued)

Type 1

Note: PLCC Package Pin 23 is DON'T CONNECT.

8-megabit
(512K x 16 or
1024K x 8)
Unregulated
Battery-Voltage[™]
High-speed
OTP EPROM

AT27BV800

Not Recommended for New Designs

Rev. 0988D-05/00

read mode operation. The x16 organization makes this part ideal for portable and hand held 16- and 32-bit microprocessor-based systems using either regulated or unregulated battery power.

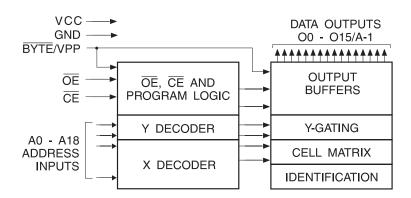
Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3V supply. At $V_{CC}=2.7V$, any word can be accessed in less than 150 ns. With a typical power dissipation of only 10 mW at 5 MHZ and $V_{CC}=3V$, the AT27BV800 consumes less than one fifth the power of a standard 5V EPROM.

Standby mode supply current is typically less than 1 mA at 3V. The AT27BV800 simplifies system design and stretches battery lifetime even further by eliminating the need for power-supply regulation.

The AT27BV800 can be organized as either word-wide or byte-wide. The organization is selected via the \overline{BYTE}/V_{PP} pin. When \overline{BYTE}/V_{PP} is asserted high (V_{IH}), the word-wide organization is selected and the O15/A-1 pin is used for O15 data output. When \overline{BYTE}/V_{PP} is asserted low (V_{IL}), the byte-wide organization is selected and the O15/A-1 pin is used for the address pin A-1. When the AT27BV800 is logically regarded as x16 (word-wide), but read in the byte-wide mode, then with A-1 = V_{IL}, the lower eight bits of the 16 bit word are selected; with A-1 = V_{IH}, the upper eight bits of the 16-bit word are selected.

The AT27BV800 is available in industry-standard, JEDEC-approved, one-time programmable (OTP) PLCC, SOIC (SOP) and TSOP packages. The device features two-line control ($\overline{\text{CE}},\overline{\text{OE}}$) to eliminate bus contention in high-speed systems.

With high-density 512K-word or 1024K-bit storage capability, the AT27BV800 allows firmware to be to be stored reliably and to be accessed by the system without the delays of mass storage media.


The AT27BV800 operating with V_{CC} at 3.0V produces TTL-level outputs that are compatible with standard TTL logic devices operating at $V_{CC} = 5V$. At $V_{CC} = 2.7V$, the part is compatible with JEDEC-approved low-voltage battery operation (LVBO) interface specifications. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.

Atmel's AT27BV800 has additional features that ensure high quality and efficient production use. The Rapid[™] Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 50 µs/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming equipment and voltages. The AT27BV800 programs exactly the same way as a standard 5V AT27C800 and uses the same programming equipment.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device nonconformance. At a minimum, a 0.1 μF high-frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature under Bias55°C to +1	25°C
Storage Temperature65°C to +1	50°C
Voltage on Any Pin with with Respect to Ground2.0V to +7	.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14	.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14	.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to + 7.0V for pulses of less than 20 ns.

Operating Modes

					Outputs		
Mode/Pin	CE	ŌĒ	Ai	BYTE/V _{PP}	O ₀ - O ₇	O ₈ - O ₁₄	O ₁₅ /A-1
Read Word-wide	V _{IL}	V _{IL}	X ⁽¹⁾	V _{IH}	D _{OUT}	D _{OUT}	D _{OUT}
Read Byte-wide Upper	V _{IL}	V _{IL}	X ⁽¹⁾	V _{IL}	D _{OUT}	High-Z	V _{IH}
Read Byte-wide Lower	V _{IL}	V _{IL}	X ⁽¹⁾	V _{IL}	D _{OUT}	High-Z	V _{IL}
Output Disable	X ⁽¹⁾	V _{IH}	X ⁽¹⁾	Х		High-Z	
Standby	V _{IH}	X ⁽¹⁾	X ⁽¹⁾	X ⁽⁶⁾		High-Z	
Rapid Program ⁽³⁾	V _{IL}	V _{IH}	Ai	V _{PP}		D _{IN}	
PGM Verify	Х	V _{IL}	Ai	V _{PP}		D _{OUT}	
PGM Inhibit	V _{IH}	V _{IH}	X ⁽¹⁾	V _{PP}		High-Z	
Product Identification ⁽⁵⁾	V _{IL}	V _{IL}	$A9 = V_H^{(4)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A18 = V_{IL}$	V _{IH}	Identification Code		

Notes:

- 1. X can be V_{IL} or V_{IH} .
- 2. Read, output disable and standby modes require $2.7V \le V_{CC} \le 3.6V$ or $4.5V \le V_{CC} \le 5.5V$.
- 3. Refer to the programming characteristics tables in this datasheet.
- 4. $V_H = 12.0 \pm 0.5 V$.
- Two identifier words may be selected. All Ai inputs are held low (V_{IL}) except A9, which is set to V_H, and A0, which is toggled low (V_{IL}) to select the Manufacturer's Identification word and high (V_{IH}) to select the Device Code word.
- 6. Standby V_{CC} current (I_{SB}) is specified with $V_{PP} = V_{CC}$. $V_{CC} > V_{PP}$ will cause a slight increase in I_{SB} .

DC and AC Operating Conditions for Read Operation

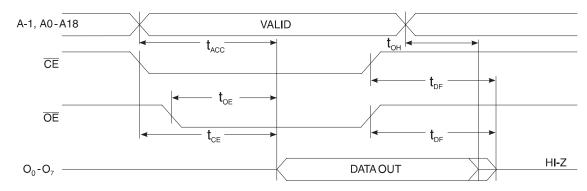
		AT27BV800-15
Operating Temperature (Coos)	Com.	0°C - 70°C
Operating Temperature (Case)	Ind.	-40°C - 85°C
V. Davier County		2.7V to 3.6V
V _{CC} Power Supply		5V ± 10%

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
V _{CC} = 2.7\	/ to 3.6V				
ILI	Input Load Current	V _{IN} = 0V to V _{CC}		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	V (1) Otan allow Occurrent	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		20	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		100	mA
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}, V_{CC} = 3.6V$		10	mA
.,	Leave I and Wallance	V _{CC} = 3.0 to 3.6V	-0.6	0.8	V
V_{IL}	Input Low Voltage	V _{CC} = 2.7 to 3.6V	-0.6	0.2 x V _{CC}	V
.,	Leave I Pale Wallance	V _{CC} = 3.0 to 3.6V	2.0	V _{CC} + 0.5	V
V _{IH} Input High Voltage	V _{CC} = 2.7 to 3.6V	0.7 x V _{CC}	V _{CC} + 0.5	V	
		I _{OL} = 2.0 mA		0.4	V
V _{OL} Output Low Voltage	I _{OL} = 100 μA		0.2	V	
		I _{OL} = 20 μA		0.1	V
		I _{OH} = -2.0 mA	2.4		V
V_{OH}	Output High Voltage	I _{OH} = -100 μA	V _{CC} - 0.2		V
		I _{OH} = -20 μA	V _{CC} - 0.1		V
V _{CC} = 4.5\	/ to 5.5V			,	
ILI	Input Load Current	V _{IN} = 0V to V _{CC}		±1.0	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5.0	μA
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μA
	V (1) Otan dla v Oversant	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μA
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		1	mA
I _{cc}	V _{CC} Active Current	$f = 5MHz$, $I_{OUT} = 0$ mA, $\overline{CE} = V_{IL}$		40	mA
V _{IL}	Input Low Voltage		-0.6	0.8	٧
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OH} = -2.1 mA		0.4	٧
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V

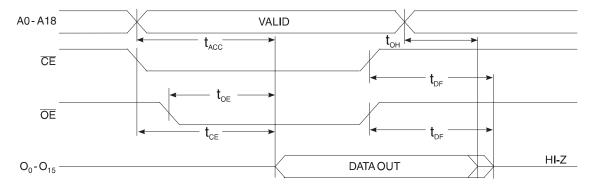
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

^{2.} V_{PP} may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .


AC Characteristics for Read Operation

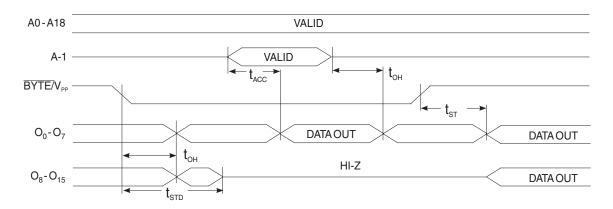
 V_{CC} = 2.7V to 3.6V and 4.5V to 5.5V

			AT27B\	AT27BV800-15	
Symbol	Parameter	Condition	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		150	ns
t _{CE} ⁽²⁾	CE to Output Delay	OE = V _{IL}		150	ns
t _{OE} ^(2,3)	OE to Output Delay	CE = V _{IL}		50	ns
t _{DF} ^(4,5)	OE or CE High to Output Float, whichever occurred first			40	ns
t _{OH} ⁽⁴⁾	Output Hold from Address \overline{CE} or \overline{OE} , whichever occurred first		5.0		ns
t _{ST}	BYTE High to Output Valid			150	ns
t _{STD}	BYTE Low to Output Transition			60	ns

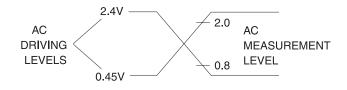

Notes: 1. 2,3,4,5. See the AC Waveforms for Read Operation diagram.

Byte-wide Read Mode AC Waveforms⁽¹⁾

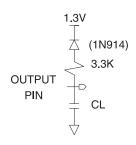
Note: 1. $\overline{\text{BYTE}}/\text{V}_{PP} = \text{V}_{IL}$


Word-wide Read Mode AC Waveforms⁽¹⁾

Note: 1. $\overline{BYTE}/V_{PP} = V_{IH}$


BYTE Transition AC Waveforms

Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.

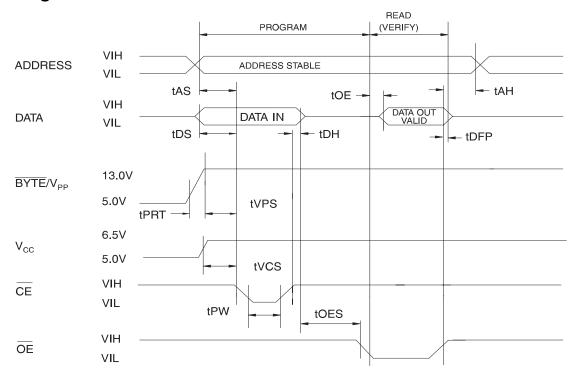

- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

 $t_{\rm R}$, $t_{\rm F}$ < 20 ns (10% to 90%)

Output Test Load

Note: CL = 100 pF including jig capacitance.


Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	10	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27BV800, a 0.1 μ F capacitor is required across V_{PP} and ground to suppress voltage transients.

DC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $V_{PP} = 13.0 \pm 0.25V$

			Lir	Limits		
Symbol	Parameter	Parameter Test Conditions		Max	Units	
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ	
V _{IL}	Input Low Level		-0.6	0.8	V	
V _{IH}	Input High Level		2.0	V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V	
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V	
I _{CC2}	V _{CC} Supply Current (Program and Verify)			50	mA	
I _{PP2}	V _{PP} Supply Current	CE = V _{IL}		30	mA	
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V	

AC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $V_{PP} = 13.0 \pm 0.25V$

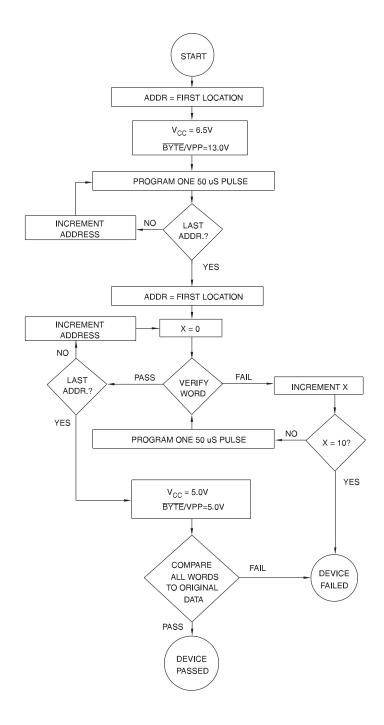
			Lin	nits	
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units
t _{AS}	Address Setup Time	Input Rise and Fall Times:	2		μs
t _{OES}	OE Setup Time	(10% to 90%) 20 ns	2		μs
t _{DS}	Data Setup Time		2		μs
t _{AH}	Address Hold Time	Input Pulse Levels: 0.45V to 2.4V	0		μs
t _{DH}	Data Hold Time	0.43 V to 2.4 V	2		μs
t _{DFP}	OE High to Output Float Delay ⁽²⁾	Input Pulse Levels:	0	130	ns
t _{VPS}	V _{PP} Setup Time	0.8V to 2.0V	2		μs
t _{VCS}	V _{CC} Setup Time	Input Timing Reference Level:	2		μs
t _{PW}	CE Program Pulse Width ⁽³⁾	0.8V to 2.0V	47.5	52.5	μs
t _{OE}	Data Valid from OE			150	ns
t _{PRT}	BYTE/V _{PP} Pulse Rise Time During Programming	Output Timing Reference Level: 0.8V to 2.0V	50		ns

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

Atmel's 27BV800 Integrated Product Identification Code⁽¹⁾

	Pins									
	Α0	015	014	O13	012	011	O10	О9	08	
Codes		07	O6	O 5	04	О3	02	01	00	Hex Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E1E
Device Type	1	1	1	1	1	1	0	0	0	F8F8

Note: 1. The AT27BV800 has the same Product Identification Code as the AT27C800. Both are programming compatible.


^{2.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram.

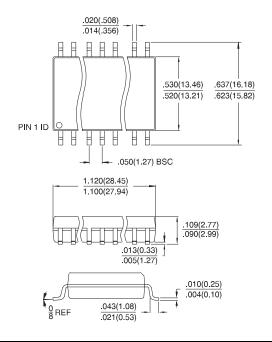
^{3.} Program Pulse width tolerance is 50 μ s \pm 5%.

Rapid Programming Algorithm

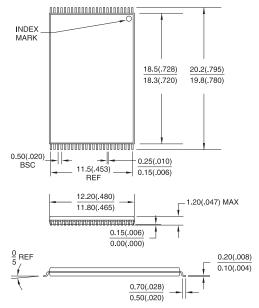
A 50 μ s \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{BYTE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 50 μ s \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 μ s pulses are applied with a verification after each

pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

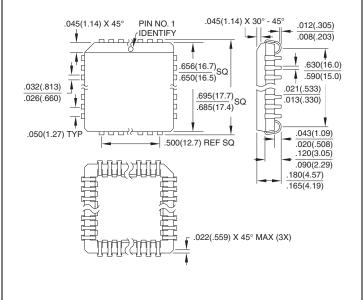

t _{ACC}	I _{cc}	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	10	0.02	AT27BV800-15JC	44J	Commercial
			AT27BV800-15RC	44R	(0°C to 70°C)
			AT27BV800-15TC	48T	
	10	0.02	AT27BV800-15JI	44J	Industrial
			AT27BV800-15RI	44R	(-40°C to 85°C)
			AT27BV800-15TI	48T	

	Package Type			
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)			
44R	44-lead, 0.525" Wide, Plastic Gull Wing Small Outline Package (SOIC/SOP)			
48T	48-lead, Plastic Thin Small Outline Package (TSOP) 12 x 20 mm			


Packaging Information

44R, 44-lead, 0.525" Wide, Plastic Gull Wing Small Outline Package (SOIC/SOP)

Dimensions in Inches and (Millimeters)



48T, 48-lead, 12 x 20 mm, Plastic Thin Small Outline Package (TSOP) Dimensions in Millimeters and (Inches)* JEDEC OUTLINE MO-142 BD

*Controlling dimension: millimeters

44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-018 AC

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

> Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 2000.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing $^{\text{@}}$ and/or $^{\text{m}}$ are registered trademarks and trademarks of Atmel Corporation.

Printed on recycled paper.